
*&

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THSI U-rio
'RADU. F EB 2 1 8

HIGH SPEED OUTPUT INTERFACE FOR A
MULTIFRFQUENCY QUATERNARY PHASE SHIFT
KEYING SIGNAL GENERATED ON AN INDUSTRY

STANDARD COMPUTER

by

Robert Daniel Childs

December 1988

Thesis Advisor: P. H. Moose

Approved for public release; distribution is unlimited.

--------.-- , , m 'l~ m mm m m mnn~mlmomumnn~ll ull,2 I* 1l

UNCLASS 1 FI El)

SEC'L,T CLASS CA' O T.. S PAGE

REPORT DOCUMENTATION PAGE I'M6 0 0 78

la REPORT SEC.- C. a'% ;-(A'jON ' PE)5P (" Vf '.& j,

UNCLASSIFIED
2a SECURI'y CIASSt(A' ON A,,-OR -' 3 D STR B_- ON AVA'wAB 'y (

,

Approved for public release;
2b DECLASS!FCAON 9 ,'NGPAD'NC S .. distribution is unlimited

4 PERFORM NG ORGAN ZA71ON REPORT ',MB- S 5 MONITOR NC OPCA% ZA C% R -U , .

6a NAME OF PERFORM %G ORGAN ZA'1ON 6b OFF CE 5YMBO- 7a NAME OF MON ' R %G OP(_A'. ZA- _)%

(If applcable)

Naval Postgraduate School 62 Naval Postgraduate School
6(ADDRESS Ct State and ZIPCoe) 7o ADDIESS C,ty State and ZIPCodeJ

Monterey, California 93943-5000 Monterey, California 93943-5000

Ba NAV*; O; z_ D NC S;ON0V , C : O (I: 5S 'VB ,) -P Q' ! . ." , : % ' - DE , . . % %,n :-
ORGAN :'A O%% (W aphcable)

8C ADDrPESS ((t) State a" , ZIPCod,) ' '
- "
(-- '' ' '

,

'1 "TE U(n(Udet, C a,,(a,..n) HIGH SPEED OUTPUT INTERFACE FOR A MULTIFREQUENCY

QUATERNARY PHASE SHIFT KEYING SIGNAL GENERATED ON AN INDUSTRY STANDARD
CCMXPT:TTER
'2 EPSO',. A--. "t--'

CHILDS, Robert Daniel

'3a 'PF) 1 / c ~ 0. ;)Dp- Yca' Mc''h D,

Master's Thesis '=, . 1988 December 62
1 -,)-,'A" ' " ''The views expressed in this thesis are those of t h(

author and do not reflect the official policy or position of the Dep:,r*-ment of Defe(-nse or ThF- VTS Government,
'7 C0r'rn(, 3q 'YC'IY . - -Ssa " 'I " ' k

'Communication; MFQPSK; Fourier

C A '
.

COntru, On rewerse if necessary and ,den'-f b, htik -nrr.,t -

A multiple frequency quaternary phase shift keyed signal is generated
using a complex Fast Fourier Transform on an industry standard personcl
computer and is output using direct memory access through a digital to
analog converter. The output is permitted at rates of up to the maximum
direct memory access rate of the computer. An assembly language program
loop, direct hardware output, and high level language output are compared
as alternpte solutions to the problem of outputting a data stream
contained in the computer primary memory.

/

7.)S ')' ,U A.A ' AR','RA(' *' ABS''A(' S)., P (-12 ,,'"

,NcQAsS (N')D E] SAN') A; c: E C :SF UNCLASSIFIED
22a NA%' %U DPD,',5 ill N] ,, . 22b -. C, (Include area Co df)

MOOSE, P. 1 (408)-646-2838 62Me

DD Form 1473, JUN 86 Pre.,ous dorons are obsolete . ' . A

S ., (I _'-LF-() I -UNCLASSIFIED

II~l~mI m, II / 'i ll I I I l -,,m. I i I

Approved for public release; distribution is unlimited.

High Speed Output Interface for a Multifrequency Quaternary
Phase Shift Keying Signal Generated on an Industry Standard

Computer.

by

Robert Daniel Childs
Lieutenant, United States Navy

B.S.E.E., University of Washington, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1988

Author: l- ,L A
Ro rt D nie Childs

Approved By: _

'P. H.-Mo 'se, Thesis Advisor

G. E. Latta, Second Reader

NQ" ohn P. Powers, Chairman,
Department o? Electrical and Computer Engineering

Gordon E. Schacher,
Dean of Science and Engineering

ii

A

ABSTRACT

A multiple frequency quaternary phase shift keyed signal

is generated using a complex Fast Fourier Transform on an

industry standard personal computer and is output using direct

memory access through a digital to analog converter. The

output is permitted at rates of up to the maximum direct

memory access rate of the computer. An assembly language

program loop, direct hardware output, and high level language

output are compared as alternate solutions to the problem of

outputting a data stream contained in the computer primary

memory.

A o -sc't l For

D ,

iii

DISCLAIMER

Some of the terms used in this thesis are registered

trademarks of commercial products. Rather than attempt to

cite each occurrence of a trademark, all trademarks appearing

in this thesis are listed below following the name of the firm

holding the trademark:

Advanced Micro Devices Co. .. AMD
Borland International, Inc. Turbo Pascal, Turbo Pascal

........................... Numerical Methods Toolbox,

........................... Turbo Assembler, and the

.......................... Turbo Debugger
Integrated Device Technology

Inc IDT
Intel Corporation Intel
Jameco Electronics Jameco
Microsoft Corporation Microsoft, MS-DOS
Zoran Corporation Zoran

The reader is cautioned that computer programs developed

in this research may not have been exercised for all cases of

interest. While every effort has been made, within the time

available, to ensure that the programs are free of computa-

tional and logical errors, they cannot be considered vali-

dated. Any application of these programs without additional

verification is at the risk of the user.

iv

TABLE OF CONTENTS

I. INTRODUCTION .. 1

II. PC BASED MFQPSK COMMUNICATIONS 7

III. IMPLEMENTATION OPTIONS 16

IV. SUMMARY AND CONCLUSIONS 37

APPENDIX A MAIN OUTPUT PROGRAM 41

APPENDIX B OUTPUT LOOP PROGRAM 48

APPENDIX B REFRESH ADJUSTMENT PROGRAM 49

APPENDIX C DMA INITIALIZATION AND OUTPUT PROGRAM 50

APPENDIX D PROTOTYPE PINOUT AND LOGICAL BLOCK DIAGRAM 51

LIST OF REFERENCES .. 53

INITIAL DISTRIBUTION LIST 54

v

I. INTRODUCTION

A. BACKGROUND

Over the past several years a multiple frequency quater-

nary phase shift keyed (MFQPSK) communications system has been

developed at the Naval Postgraduate School (Proctor,1985)

(Gray,1986) (Whitacre, 1986). Several implementations have

been proposed which require specialized hardware construction

with no flexible means of actually generating the signal

instead requiring the signal to be generated offline. A

simpler implementation housed in the industry standard

computer was desired. The benefits of using a general purpose

personal computer as the driver were anticipated to be that

the transfer of data would be simplified if the output device

was physically connected to the generation device and that the

technique could be simply replicated by others desiring to

generate such signals.

B. MFQPSK SIGNAL

The MFQPSK encoding is similar to that currently used by

1200 baud modems using the Bell 212A Standard differentidl

phase shift keying (DPSK) in that data is represented by one

of four phase shifted versions of a single frequency (tone)

in each baud of a transmission. A baud is a discrete grouping

1

of information, in this case, capable of representing two

binary bits of information.

A four baud sequence of the four possible phase choices

on a single tone is demonstrated in Figure 1 where the

relative phase selections are +0 degrees, +180 degrees, +270

degrees, and +90 degrees. Note that the shift is referenced

to the previous phase position, not the initial position of

a +45 degree phase shifted sinusoid.

-1

5yte N~e-

Figure 1. Four Baud Sequence

The modem technology does not directly shift the tone's

phase but rather uses the algebraic addition and subtraction

of a sine wave and cosine wave, the quadrature or orthogonal

components, of the tone to modulate this phase information as

2

A

is shown in Figure 2 which represents the third baud -f the

above sequence--a total of +135 degrees shift, or tone

shifted to the second quadrant.

Figure 2. Second Quadrant Signal

While this method is employed reasonably well with one

discrete frequency (or two for the case of a full duplex

modem) it is not very practical for multiple frequencies.

A method of modulating frequencies with phase information,

which is suited better to many frequencies, is the frequency

spectrum to time signal transformation of the Fast Fourier

Transform (FFT).

Figure 3 demonstrates this principle for a single fre-

quency and a phase in the first quadrant (a phase shift of +90

degrees) of a 16 frequency bin system and introduces a new

3

Figure 3. One Frequency in a 16 Bin System

graphical convention where the frequency spectrum is displayed

showing both phase and magnitude on a single graph. Each

frequency location is a polar plot with the line length

representing the magnitude of a frequency and the angular

displacement representing the phase shift. A vertical line

would indicate a positive purely imaginary frequency. The

FFT method is the approach taken to generate the MFQPSF

signal. The phases are specified in theiL appropriate

frequency bins which, in turn, predetermines, for real

signals, the phases for the bins symmetrically located about

the half sampling (Nyquist) frequency bin of the transform.

The spacing of these frequency bins (or frequency resolution)

is determined by dividing the Nyquist frequency by the number

of bins on each side. Sampling time is the direct inverse of

this frequency bin size. An example that encodes information

in four frequencies per baud in a 16 frequency bin system is

shown in Figure 4. If the resulting transformed signal has

the sampled-and-held signal updated with a new value at a

frequency of, for example, 60 Hz, the Nyquist frequency is 60

4

Hz, the top frequency bin represents 120 Hz and each of the

frequency bins have a size of 7.5 Hz.

Figure 4. Four Frequencies in a 16 Bin System

Following the Inverse Discrete Fourier Transformation of

such a signal, the completely real time domain signal, which

consists of a series of 16 discrete steps made continuous by

holding the sample until the next discrete step is due, is

transmitted carrying phase information in each of the discrete

frequencies simultaneously. The overall signal closely

resembles bandlimited white noise. Figure 5 shows the time

domain signal of a typical 256 tone, 4096 bin packet or baud.

C. OVERVIEW

The purpose of this study was to design, optimize, and

construct a prototype output expansion board for the personal

computer bus. The sister design problem of constructing an

expansion board for the received signal is the subject of a

concurrent thesis study, although to a large extent the

problem is greatly simplified by choices made on the output

problem. Chapter Two addresses the communication system as

5

I i

,I I

4C 500 600 7CC

2ve N~rnter

Figure 5. Time Domain Signal of a 256 Frequency
Signal in a 4096 Bin System.

a whole and discusses the required hardware and software

elements to make the system viable. The many elements of

interaction and interdependence are discussed to enable the

reader to develop a base of understanding for the choices made

in the following chapters. Implementation options are

discussed along with details of the experimental process in

Chapter Three. The conclusions and recommendations for

further study are the subjects of Chapter Four.

6

II. PC BASED MFQPSK COMMUNICATIONS

A. SYSTEM COMPONENTS

The major components in a personal computer based MFQPSK

communications system are: (1) data input, (2) Fast Fourier

Transform mechanism, (3) memory access system, and (4) digital

to analog conversion.

The organization of these elements is coordinated by a

main high level language program which calls subroutines to

initiate the individual operations required.

B. DATA INPUT

The main program's first task is to retrieve the message

character set and perform the frequency encoding. A

subroutine would typically perform this task. In the final

system implementation, it is supposed that the entire message

to be encoded is readily available for translation. Messages

are prepared independently of the communications system, but

quite possibly with an editor on the same physical computer,

with characters being represented in American Standard Code

for Information Interchange (ASCII) format and placed together

as a standard Microsoft Disk Operating System (MS-DOS) file

on one of the computer's disk drives.

7

The encoding process must take care of several details to

be used effectively: (1) It must confirm an appropriately-

sized message, for example 4096 characters, fill the unused

character area with a predetermined idle character if too

short, or break the message into packets, each of which can

be contained within the size constraints provided, if too

long. If the message is broken into parts, the main program

must have a means of automatically transmitting multiple

segments. (2) The primary memory needed for the FFT subroutine

parameters and scratch area must be dynamically allocated

prior to the subroutine call and deallocated following. The

exception to the deallocation is the case where several

packets are being prepared for transmission as a single

message. Allocated areas represented by a pointing vector

would be maintained in a list of areas in main memory to be

output. When the transmission started, each area would be

transmitted in turn, with pointers representing that area

being removed from the message's list of pointers and sent to

the transmitting routine. (3) Appropriate phase and frequency

information must be assigned based on the message given,

retained and assigned the complex conjugate values in the

corresponding symmetrically located frequency bins. (4)

Finally, the encoding subroutine must initiate the FFT

subroutine call if the FFT is to be completed in software or

must pass the appropriate primary memory location to the main

8

program if a hardware FFT is to be accomplished. If a

multiple packet message was to be sent an FFT would be

conducted repetitively by moving through the message list of

pointers.

C. FAST FOURIER TRANSFORM

Once the process has the data encoded into frequency and

phase information, the FFT must be performed. As mentioned

in the previous section, this can be accomplished either in

hardware or software.

In the hardware choice, the data must be passed from the

computer primary memory to the expansion board where a

provision will have to be made at this point for an off

computer secondary storage method. A hardware FFT, to utilize

its speed advantage over a software FFT, must position the

entire array of data elements in such a way as to allow all

data to enter the parallel FFT process simultaneously and then

be able to output the data in a byte serial fashion for final

digital to analog conversion.

In the software FFT case, the main program must now call

the FFT routine. FFT routines typically are passed an address

pointer to the data location and return the transformed data

in the same primary memory space.

9

J A

D. MEMORY ACCESS

Regardless of whether the data is transferred from the

primary memory to the expansion board before or after the FFT

is performed, a decision about the means by which it is

transferred must be made, unless the computer's memory is to

be paralleled with memory placed on the expansion board or the

hardware device is to have some bus authority, possibly as a

parallel processor. Paralleling memory has hazards which will

be discussed a little in the next chapter on choices. In

general, however, there are three reasonably routine methods

of moving the data off computer: (1) high-level language

transfer; (2) assembly-language transfer; and (3) direct

memory access (DMA). Each of these choices lead to different

paths, each requiring further choices to be made. One major

factor in the decision, common to all choices, is the com-

puter's own housekeeping problems, specifically, the memory

refresh requirement and the nature and means of executing

instructions.

E. HOUSEKEEPING

1. MEMORY REFRESH

Computers use dynamic random access memory (DRAM) for

their main memory. DRAM consists of a bank of single

transistor elements which are conveniently modelled by a bank

of capacitors having either a charged or depleted state

10

representing a logic one or zero respectively. As with all

capacitors, the charge will tend to leak over time, with the

less desirable devices having less internal capacitance, and

therefore less ability to hold their charge for a specified

time. These less desirable devices require recharge or

refresh more often than the more desirable ones. A typical

engineering judgement made by the memory device manufacturer

sets the time between refresh cycles at 15.125 microseconds.

This refresh is carried out automatically by a single

DMA channel. Since the priority of the refresh is higher than

any other computer operation, including that of the main

program execution, allowances or corrections must be made to

prevent a negative impact on the program's performance.

2. INSTRUCTION FETCHING AND EXECUTION

Instructions are placed in a section of main memory

along with the operands they may require for execution. The

instructions have varying lengths and are fetched by the main

processor one byte at a time. The rate for this instruction

fetch is one byte every four clock cycles because it is

basically a memory fetch. Therefore, the instructions which

consist of several bytes may take many clock cycles to load

into the processor before they can be executed.

One of the innovations of the Intel 8088 over earlier

processors was the implementation of an advanced fetching

mechanism where instructions can be fetched in advance of

11

their being needed by the processor. A total of four instruc-

tions may be prepostioned like this. One difficulty in

placing the instructions in the processor in advance is that

if a program loop occurs or program control is passed to

another location by a subroutine call, the processor is ready

to execute instructions in the old path. In these cases, the

instructions are flushed from the processor and the process

is restarted. This time consuming process can actually slow

down the execution of a program directly following a branch

or loop.

Instructions are programs contained within the

microprocessor. These little programs are called microcode.

Execution times of these microcoded programs depend on the

number of operations to be performed. Some instructions are

fairly straightforward and consume few machine cycles.

Examples of short instructions are register to register

transfers or arithmetic rotates which typically require a

single arithmetic logic unit cycle. The two instructions

cited take only two clock cycles of the main processor to

accomplish. Others such as the interrupt instruction are

extremely complicated and perform many functions inside the

processor. It manipulates the stack pointer six separate

times, as well as manipulating a number of other registers and

takes over 50 clock cycles to perform.

12

A
4'

Regardless of the instruction or its length, the

processor will complete the instruction in its entirety before

passing bus control to another process.

3. HARDWARE INTERRUPTS

In addition to memory refresh, processor program

control may be set aside by the occurrence of hardware inter-

rupts. The three interrupts used by the computer are:

Interrupt 0 which is invoked every time the Intel 8253

programmable interval timer count reaches zero, Interrupt 1

which is invoked every time a key is depressed on the system

keyboard, and Interrupt 6 which reports a disk access

complete.

These interrupts are maskable and can be disabled by

selecting the appropriate mask at Port 21h (address of the

interrupt controller).

4. SYSTEM IDLE

Any program controlled machine must either be held in

a halted state or it must have a series of instructions to

perform. The halted state is used whenever another processor

has control of the bus as in the case of a DMA transfer. More

often than not, however, some input is required from the

keyboard for the operating system to perform its next func-

tion. The input required may be a data input for a program,

or may be a command for the operating system itself invoking

a program.

13

The program loop used by the system while waiting for

input contains the two instructions at each end of the

instruction execution time spectrum--a two clock cycle

instruction and a 52 clock cycle instruction. This program

loop keeps checking to see if any entry has been made to the

keyboard. Since the time to type a key is so large compared

to the time it takes to perform instructions, the keyboard

interrupts the process and deposits the representation of the

key in a buffer in memory and, if the key is the first to be

placed in an empty buffer, sets a flag to indicate something

in the buffer.

The read-only memory (ROM) basic input/output system

(BIOS) contains the instructions which tell the computer how

to perform this vital service of waiting for an input. The

ROM-BIOS is proprietary and changes from machine to machine

but in all machines the program loop looks something like the

following (the numbers in parenthesis indicate the number of

clock cycles required for the instruction to execute):

mov ah,l ;request service #1 (4)
recheck: int 16h ;anything from keybd?(51)

jz recheck ;zero flag means no (16)
mov ah,0 ;request service #0 (4)
int 16h ;places char in ah,al(51)

14

l w l | |

Int 16h looks something like:

cmp flag,l ;true flag means keybd(9)
;hardware interrupt # 1
;has occurred--its
;int service routine sets
;the flag

iret (32)

F. DIGITAL TO ANALOG CONVERSION

All implementations of this system perform the digital to

analog (D/A) conversion on the expansion board off computer.

Since the conversion is made continuously, some decision must

be made regarding the method of latching the data and

selecting the specific time to activate the latch. Once data

is latched the conversion is made to an analog signal. The

design must specify the form of the analog signal to be used.

The three decisions required are: (1) the no signal voltage

level; (2) the voltage maximum to minimum range; and (3) the

level of accuracy chosen. One of the given parameters in this

study was that an eight bit conversion was sufficiently

accurate. This was a convenient choice since memory data is

eight bits wide and the INTEL 8088 transfers eight bits at a

time.

15

III. IMPLEMENTATION OPTIONS

A. DATA INPUT

Since the encoding process is currently unresolved and the

subject of further research in another thesis project, a test

harness called ENCODEDATA was written which allowed the

selection of the signals for a test of the remainder of the

system. ENCODEDATA is the first subroutine called in the main

program which is located in Appendix A. The subroutine

prompts the user to choose the phase of the selected frequency

bin or makes provision for a random assignment of frequency

phase information for all assigned frequency bins. It

maintains a record of the choices made so that the phases of

the symmetrically located frequencies are properly chosen to

maintain a real signal output following the FFT.

B. FFT IMPLEMENTATION

One of the first choices made in the design process was

whether to implement the FFT in hardware or software, because

of the number of other system characteristics resting on the

decision. Arguably there exists a third option, that the FFT

could be calculated off the computer with the results for

transmission submitted as a file. If such a choice were made,

however, the main reason for having a personal computer-based

16

system, the ability to have a completely integrated system,

would be violated.

The concept design provided at the start of this project

assumed that the transformation of the data to be transmitted

would be received and encoded by an offline FFT being provided

to the computer simply as a file of bytes to be transmitted.

At the time this author joined the research project, the FFT

was being accomplished in the A Programming Language (APL)

language off-line with the resulting data file being

transferred to the output device which was a simple barrel

shift register feeding a D/A converter.

The decision was made to incorporate the FFT into the

computer system to allow a completely integrated system. A

hardware FFT implementation was rejected because of the

current lack of a single chip 4096 point FFT device. A few

notes on the current work in this area are included in the

conclusions and recommendations area.

Following the decision to use a software FFT implementa-

tion, the algorithm and computer language needed to be chosen.

As was mentioned earlier, the preliminary research used APL

which is an interpretive rather than a compiled language. The

author chose to use a much faster compiled language such as

Pascal, C or Fortran for -he final implementation.

One benefit of using a compiled program in place of an

interpreted program is that, for an interpreted language, much

17

A

more memory is required to be in use to support the program.

Interpreted languages must keep every command structure

available for use. A compiled program typically picks only

those function categories required for the specific applica-

tion to be loaded into memory for the program to execute

successfully. For example, if screen output is not required,

all routines concerning screen interface may be omitted from

the compiled version of the program with no ill effect.

The biggest effect, though, is speed. The author found

a standard Turbo Pascal FFT routine would run at about one-

half of the time cost of using APL.
1

The decision was made to use an FFT routine from a

standard library. The FFT subroutine used for the test

harness is called ComplexFFT and is part of the file

FFT87B2.INC available as part of the Borland Tirbo Pascal

Numerical Methods Toolbox.2 The Cooley-Tukey Algorithm is

used in this implementation and requires approximately 22

seconds for a 4096 point FFT on an 8.0 MHz zero wait state

machine with an Intel 80287 math coprocessor. The FFT is

performed prior to the beginning of the message transmission.

1The actual times were 22 seconds for the Turbo Pascal versus
57 for the APL using the same machine with the most efficient
algorithms known.

2Source code for this subroutine is not included because the
license will not permit reprinting the source code. A program
written by the license holder is permitted to include a compiled
copy of the subroutine.

18

A

As with many FFT routines, the transformed signal is returned

to the calling program in the same matrix (this also means the

same primary memory locations) in which the input frequency

and phase information were passed.

Flexibility was the factor which the author used to decide

on the specific compiled language with all other elements

being equal. FFT subroutines using the same basic algorithm

were readily available in Fortran and Pascal, and could have

easily been translated into C. Pascal was chosen over Fortran

because of the ease in handling input and output and because

of the fact that, since its entry (particularly the entry of

TURBO PASCAL by Borland International, Inc. which dramatically

changed the pricing structure for programming languages) into

the personal computer arena, a wealth of standard routines

have become available. All software needed for the develop-

ment of this project had a cumulative cost of approximately

$200 at commercial retail rates.3

3This cost included the Turbo Pascal Numerical Methods
Toolbox, of which the FFT and related routines are a part, the
Turbo Assembler and the Turbo Debugger, which were used for the
Assembly language subroutines for initialization and startup of the
DMA process, and Turbo Pascal, which was used for the main prograr
home for the system. The cost of the operating system (approxi-
mately $100) is not included in these estimates.

19

C. DATA OUTPUT TECHNIQUES

Given that the FFT was to be performed in software, the

next step in the process was to decide on the method of

getting the FFT results from internal memory to the D/A

converter. The largest problem initially considered in this

area was that of accommodating the memory refresh overhead for

the primary memory. Several approaches were examined: (1)

postpone the refresh such that the entire block of data (4096

bytes) could be transmitted in between refreshes; (2) replace

the dynamic memory with static memory which requires no

refreshing; (3) use off computer static or bubble memory,

loading the memory off computer in parallel with the on

computer memory, and then isolating the computer bus during

the transmission of the output signal; (4) use off computer

static or bubble memory, transferring data to the off computer

memory and then transmitting; and (5) use DMA in the single

byte mode so that memory refresh could be accomplished in a

normal manner.

The options were considered in much the order listed

above. The following sections detail the process through

which the decision was made.

1. POSTPONING MEMORY REFRESH

As mentioned in Section II.E, the frequency of this

refresh depends on the capacitance of the poorest quality

device in the system's memory. The computer uses DMA channel

20

zero to perform the refresh, one block at a time, initiated

by a pulse from the system timer (INTEL 8253). Each DMA

channel has a priority assigned based on the number of the

channel, with the lowest number, channel zero, having the

highest priority. Refresh excludes the processor from the

system bus for the period of refresh. The DMA controller

keeps track of the address of the memory block to be refreshed

next so that a new block is chosen each cycle. The cycle

takes five computer clock cycles to complete.

The refresh time was compared with the most

straightforward means of outputting data from the primary

memory--an assembly language program loop. Appendix B

contains a simple nine line loop program (Eggebrecht, 1983,

p. 188) which was used in this test. A total of 43 clock

cycles are required in the case of an INTEL 8088 processor to

accomplish one pass through the loop's instructions. A test

circuit was designed and used to verify the output timing.

This operational test of the first circuit design also

provided the first look at the effect of the memory refresh

on a controlled output. The test waveform was extremely

jittery.

The reason for the jitter was that while the loop

consisted of 43 clock cycles, the main processor turned

control of the busses over to the DMA channel zero memory

21

refresh every 121 cycles for a period of five clock cycles.
4

The net result of this periodicity conflict was that sometimes

two data bytes and other times three data bytes would be

output between refreshes.

The first attempt to correct the jitter resulting from

the memory refresh problem was to manage its timing to suit

the system needs. There is a wide range of timings permitted

for the memory refresh.

As mentioned previously, the memory manufacturers

specify a typical refresh requirement of 15.125 microseconds.

This is not a hard and fast rule, however. A recent article

in the PC Magazine (Roemmele, 1988, pp. 331-346) discussed a

method of manipulating the memory refresh period. Experimen-

tation on Naval Postgraduate School machines yielded an

experimental result that the refresh cycle could be extended

to 30 milliseconds for all machines with some select machines

being extended up to 0.3 seconds without parity error. The

PC Magazine article cited an example of a machine which could

be refreshed as infrequently as 1.001 seconds! The assembly

language program cited in the article and used in this test

is included in Appendix C.

4The times listed here are for the 8.0 MHz personal computer
using an Intel 80286 processor used in this project. Refresh is
based on time, not instruction cycles, whereas instructions are
just the opposite.

22

Since the refresh period could not be expanded to

include an entire block transmission in this mode, the refresh

period was reduced to match one byte of data transfer. Every

cycle of the program loop which output a single byte was

followed by a memory refresh.

The real difficulty of using the program loop was its

severe inflexibility. The entire communication system must

be designed for a specific class of machines running at a

specific frequency. If for some reason the output frequency

had to be changed, the refresh period would have to be changed

and the program loop would also have to be modified to include

more or less no operation (NOP) statements. The range of

output frequencies available under this method for an 8.0 MHz

machine was limited to a low of approximately 66 KHz because

of the memory refresh requirement and a high of approximately

145 KHz because of the time in executing statements in the

program loop.

The first design, although technically meeting the

requirements of the system, clearly needed more flexibility.

2. PRIMARY MEMORY REPLACEMENT

If static ram (SRAM) were used for primary memory,

memory refresh would not be an issue. SRAM is a much more

complicated structure which uses, instead of a single transis-

tor holding a charge, eight transistors forming a flip-flop.

This typically requires much more chip real estate and, as a

23

result, costs much more per byte than the DRAM. The obvious

next question was, "Why not just replace the DRAM with SRAM

and not worry about the refresh?" Unfortunately, the two

different types of chips are not interchangeable. A SRAM chip

manufactured with the same technology as a DRAM chip will have

less memory in the same package size. SRAM built under newer

technology allows more compact placement of the circuitry and

has a difference in the pinout which prevents a direct

replacement. One option in dealing with this problem was to

build a memory expansion board with SRAM and disable the old

memory and refresh buses. This option was not attempted

because of the drastic nature of the solution. It should be

noted, however, that the frequency range under this option

would lose its lower end limitation.

3. ADDING EXTERNAL COMPUTER MEMORY

Many times a simple conceptual design becomes greatly

burdened when it gets to the point of real world implementa-

tion. The idea of paralleling memory is one of those things

that sounds like a simple solution to the problem of trans-

ferring data but ends up being very complicated. The concept

is that corresponding memories on the buses would be paral-

lelled for the calculation part of the program and then

isolated by means of a latched address decode following the

FFT calculation. The expansion address and data buses would

have to be isolable from those of the main processor. To meet

24

A

the requirement that memory refresh would not affect the

output, an entire second system of output address program

control would have to be implemented to select the particular

byte to be output at any given time during the second phase

of the process where the busses were isolated. A 4096 byte

barrel shifter was found5 which could handle the output

problem of the second phase reasonably well without a separate

program counter, but had no means for being randomly addressed

by the processor during the first phase. Many suitable random

access devices were found which could meet the first phase

requirements but had no reasonable way of producing the output

independent of the processor's program control.

In addition to the complicated construction required,

flexibility is again of concern. Only one memory region is

allowed for the placement of data coming from the FFT. Any

other program using the computer has to be concerned about the

meaning of the latched decode address for isolating the

expansion board and its conceivable initiation of the output

process.

The research path that this series of problems seemed

to propose next was to duplicate the memory in question

without parallelling. This would allow the main processor to

execute program control for loading the external barrel

5The IDT7M204 chip was manufactured starting in 1985 by the
Integrated Device Technology Company, Incorporated. It uses a nine
bit wide data first in first out (FIFO) array of 4096 bytes.

25

mmmm (m mm lmmm• • m

shifter and then pass control for the output directly to an

oscillator which would gate the output on the expansion board.

The advantages of this modification were to permit the

computer housekeeping to proceed without any interference and

to allow the output process to operate with only the

limitations of the output device itself. As an example, the

IDT7M204 device would allow a range of output frequencies

between 0.1 Hz to 12.0 MHz.

The disadvantage was that the design still required

a means of transferring the data from internal to external

memory and imposed a limitation on the length of a continuous-

ly transmitted message to the length of the available external

buffer--in this case only one block or packet of data.

Still, this approach was the solution pretty well

settled upon until the problem of memory to memory transfer

of data was taken on in earnest. It seemed reasonable that

DMA was in order because raw speed was the prime concern in

getting the data to the output device. However, once the

study of the various DMA options was started, it became

apparent that a DMA technique might well hold the answer for

a direct output to the converter without the bother and

inflexibility of an intermediate memory device.

Additionally, if several packets were to be transmitted

in a single message, the transmission would have to stop while

the intermediate device was reloaded from main memory with the

26

A
!I

next packet of information. The DMA technique would require

only changing the base pointer in the DMA controller to effect

the location of the subsequent data for output.

4. DMA OUTPUT

The DMA controller (Intel 8237) has two general modes

of operation--block and byte. When performing a transfer in

the block mode, no maskable interrupts or other coprocesses

are allowed to take control of the bus. This can result in

a failure of the refresh if the blocks are too large. The

computer manufacturers specify this mode as unallowed for that

reason, even though technically the block mode can certainly

be programmed. When a block transfer is initiated, the

computer automatically transfers the block at the maximum DMA

rate which varies among the various computer manufacturers.

This transfer takes six clocks because of a wait state

inserted by the baseband logic to accommodate slower memory

(Eggebrecht, 1983, p. 115). The hardware designer also has

it within his ability to insert additional wait states if

needed to slow the process down. For a block of 4096 bytes

and an 8 MHz machine, this could fall within the bounds of the

extended memory refresh. If this method were to be used for

the system 4096 byte block, the transfer could occur at an

incredible byte rate of approximately 1.3 MHz taking a little

over three milliseconds to transfer the entire block!

Unfortunately, if transmission is desired at a slower rate,

27

A

the issue of flexibility again raises its head. Since the

4096 byte transfer pushes the system to its practical refresh

limits, any solution requiring additional wait states to be

inserted extends the cycle beyond acceptable limits and will

certainly result in parity error failures of the main memory.

This mode was considered with a simple modification

to the system of halving the size of the block of data. This

approach allowed the data to be transferred at any rate

between 650 KHz and 1.3 MHz by placing the I/O CH RDY line in

the inactive low state while waiting for the next clock. By

reducing the block size to half, the refresh requirements

continued to be met. The difficulty in this approach had to

do with the specific system being implemented which needed a

wide number of frequency bins available in the lower frequency

spectrum. As the frequency of byte transfer increased, the

size of the frequency bins increased as well. This, coupled

with the restriction that the block size be cut in half,

drastically reduced the number of frequency bins available in

a given low frequency response region. For example, a

frequency response of 50 Hz to 15 KHz (such as a normal

acoustic channel), sending information with a 2048 bin system

at a sampling rate of 650 KHz, has a bin size of approximately

635 Hz and only 23 frequency bins available for assignment in

the permitted frequency range. Contrast this with the 4096

bin system sampled at 60 KHz which has a bin size of

28

A

ii i | i |

approximately 29 Hz and 515 bins available for encoding within

the specified frequency response.

The DMA single byte transfer mode, even though it

takes a few more clock cycles to perform, offered more

flexibility in the design. The flexibility comes from the

ability to vary the frequency over a wide range of values by

requesting a byte transfer almost at will. Each byte is

output after an active request has been asserted on the

appropriate DMA request line.

= =1

Figure 6. Theoretical/Actual Sinusoid

29

• | •

When the choice was made to implement this design, it

was expected that the range of allowable frequencies would be

from 0.1 Hz to 880 KHz. This derived from the fact that, in

this mode, the main processor is allowed an instruction cycle

(four clock cycles) in between every DMA byte transfer (six

clock cycles). Thus only about half of the instruction

bandwidth is utilized for the DMA transfer. Unfortunately,

the background process detailed in Section II.E.2 consisted

of instructions much longer than the four clock memory access

cycle. Given the longest instruction of 51 clock cycles (INT)

and the six clock DMA cycle, the highest sampling frequency

with a 100 per cent probability of noninterference was 140.35

KHz. Even given the fact that the signal loses no pulses, the

signal is not truly stable. Because of the differing lengths

of instructions in the system idle loop, the latched signal

is transmitted at times which fluctuate slightly around the

DMA request. This effect is seen in Figure 6 and is not a

significant problem.

An incomplete summary of the events causing the

sinusoid perturbation shown in Figure 6 is listed below with

the timing references signifying the number of elapsed clock

cycles:

Cycle Event

0 INT instruction occurs and requires 51
clock cycles to complete.

I DMA requests the bus for byte transfer.

30

50 DMA cycle starts.

57 CMP instruction occurs and requires 9
clock cycles to complete.

57+ DMA requests the bus for byte transfer #2.

67 DMA cycle #2 starts.

74 IRET instruction starts and requires 32
clock cycles to complete.

107 JZERO instruction starts which flushes
the instruction pipeline but causes no
problem since it requires enough time
for execution to allow pipeline to refill.
It requires 16 clocks to complete.

114 DMA request #3.

116 DMA cycle #3 starts.

123 INT instruction starts (51 clocks).

171 DMA request #4.

175 DMA cycle #4 starts.

182 CMP instruction starts (9 clocks).

192 IRET instruction starts (32 clocks).

Note that the very worst case is the starting point

for the process, yet, by the second data point the signal is

stable at an optimum value within a very narrow time differen-

tial. Since there are two instructions in the loop with

substantially shorter instruction lengths than the troublesome

INT instruction, there is a significant cushion available to

the process to buffer the effects of the different execution

lengths.

31

When viewed on the oscilloscope the output appears

stable up to approximately 250 KHz. This is due to the fact

that the timing of the computer is completely independent of

the timing of the crystal oscillator for the expansion board

allowing the instruction performance to be much more well

behaved than the worst case cited above where the longest

possible instruction occurs just the instant before the clock

pulse requesting a byte transfer. Depending on the level of

redundancy in the code, the errors introduced by operating in

the range between 140 KHz and 250 KHz may be acceptable.

Another interesting possibility arises when the output

is accomplished at the lower rates. Less than two percent of

the instruction bandwidth of the computer is utilized at 140

KHz. This leaves most of the computer's capabilities free to

accomplish other tasks in parallel with the message

transmission.

The memory refresh is easily accommodated in this

method as well since a window is opened every byte transfer

cycle which permits another higher priority process such as

the refresh to take place.

The DMA must be initiallized when its use is to be

invoked. Initialization is accomplished by writing data to

several registers contained within the DMA controller. In the

personal computer design, the address space starting at

Address 0 is decoded and sent to the DMA controller. This

32

A

application uses an assembly language routine disguised as a

Pascal subroutine named DMAINIT (for DNA initialize). This

subroutine, which is located in Appendix D, initializes the

base address of the matrix, the number of points to be output,

the byte type of memory transfer, and the channel to be

utilized. It was written closely following a non-working

version used as an example in (Sargent and Shoemaker, 1984,

p. 246).

Since the DMA controller is unable to address the

entire address space of the computer, the DMA page register,

a device separate from the controller, is initialized in the

same subroutine with the source matrix address information.

The address which decodes to this device is 80 hexadecimal.

DMAINIT is called as the last substantive step of the

main program immediately following the SCALEDATA subroutine

which ensures that an appropriate output level is obtained.

The parameter which determines if a single block is to be

repetitively output would probably be chosen differently in

the system once a real encoded signal is being output. This

parameter is a part of the word output to location dma+ll.

In this case, the DMA was initialized to automatically return

to the same data block when the terminal count of bytes

transferred was reached so that a nonchanging signal could be

observed on an oscilloscope.

33

l l I II I .. .

The current expansion board design has a DMA request

occurring on the appropriate channel at a frequency determined

by the oscillator input. This repetitive request is the

result of an asynchronous clock running to the DREQ3* line.

(The * symbol following the signal name indicates that it is

an active low signal--in this case the request is being made

when the signal is a logic zero.) As long as the channel is

masked, the request has no effect and the output circuit

ignores anything appearing on the data bus.

When the initialization is complete, the appropriate

DMA channel is unmasked and the data transfer is started.

D. DIGITAL TO ANALOG CONVERSIONS

An octal data latch held the signal stable so that the

conversion process from a digital to an analog signal could

take place.

As can be seen in Figure 7, the data is stable (shown with

a cross-hatch) on the data bus when the IOW* signal

transitions from the active low state to the inactive high

state in conjunction with the DACK3* signal being in its

active low state. Coupling the logical or with the rising

edge sensitive flip-flop a single point is defined for the

34

I-

Figure 7. DMA Initiated Read From Memory

data latch. This is the point that primary memory is latched

to retain the value until the next valid data.
6

When a standard eight bit digital to analog converter (DAC

0800) was checked to meet the system specifications, its range

of abilities was far beyond anything that the system needed

both in terms of frequency and accuracy. The output of the

octal latch is continuously fed to the converter where its

6It is necessary to include the DACK3* signal with the IOh'*
signal to prevent data from being latched whenever the IOW* signal
becomes active due to a memory refresh. The logical or is chosen
only because of part and signal availability. The two needed
signals are available on the expansion bus only in the active low
states.

35

output is provided to the back of the computer as the analog

signal out.

The circuit was built on a Jameco JE36 PCB Breadboard

which could be inserted directly in the expansion slot with

output signals sent directly to a 25 pin connector on the

computer back.

36

IV. SUMMARY AND CONCLUSIONS

A. FLEXIBILITY

A working MFQPSK personal computer based system was

developed which not only meets the design constraints of a 10

KHz to 14 KHz frequency response output at a sampling frequen-

cy of 61.440 KHz but also provides a large measure of flexibi-

lity in the following ways: (1) the expansion board and

driving programs are able to be run on any of the industry

standard fully compatible computers using processors ranging

from the Intel 8088 to the Intel 80386 with no software or

hardware changes required; (2) the frequency response of the

system can be tuned to match different hardware constraints

imposed merely by changing the values of the constants ALOW,

BLOW, CLOW, DLOW, ELOW, EHI in the main program of Appendix

A which adjust the frequency bins selected by the data

encoding process to match the frequencies permitted; and (3)

by changing only a single clock on the expansion board, the

output sampling frequency can be modified from 0.1 Hz to 140

KHz on an 8.0 MHz machine (the upper frequency limit can be

extended to 1.3 MHz in the block transfer mode with the

following block size limitations).

37

Frequency Range Mode Max Block Size
0-140K byte no limit
80K-160K block 256
160K-320K block 512
320K-650K block 1024
650K-1.3M block 2048
1.3M block 4096

B. CHANGES REQUIRED FOR LONGER MESSAGES

With messages that result in a signal length longer than

one block, ENCODEDATA should build a table of pointers

representing the allocated memory locations where the blocks

of data are represented. ComplexFFT should be called from

within a loop that is executed until all blocks have been

transformed. Since the FFT routine returns data in the same

memory locations as when called, the table of pointers used

on entry to the loop would be the same as those needed for

output by the SCALEDATA routine. The DMAINIT routine would

have to be modified to accept another parameter representing

the current pointer to the base address. As mentioned previ-

ously, the autoinitialization option would not be chosen since

each data structure would be transmitted only once with each

call giving a new base address.

C. CURRENT AND FURTHER RESEARCH

As was mentioned earlier, current research is being

conducted to implement a receiver for the system using a

similar application of personal computer based principles.

Another project is researching an error detecting/correcting

38

scheme for translating the ASCII characters into the frequency

and phase representations.

A project is needed to settle on a method for synchroniz-

ing the data blocks to protect against signal deterioration

from the effects such as the transmission medium attenuation

and differential channel delays for different frequencies.

One intriguing concept worthy of further consideration is that

a short correlation operation could be conducted as a parallel

process utilizing the wasted portion of the instruction

bandwidth mentioned in Section III.C.4 above. Since correla-

tion requires only addition and subtraction operations which

have a computational cost of approximately one-thirtieth that

of the multiplies required for the FFT butterflies, the

process could be designed to be conducted in real time during

the transmission of a 4096 byte block of data. If not quite

enough time was available for the synchronizing correlation,

the block could be repeatedly transmitted the number of times

necessary to extend the time of transmission while providing

a simple means of error correction to the receiving system.

D. ENHANCEMENTS

The current progression towards very large scale

integrated (VLSI) circuits makes it reascnable to expect an

integrated device capable of performing a 4096 point FFT on

a single chip within the next couple of years. A semicustom

design could be pursued even now with a bitsliced approach

39

from a company such as Advanced Micro Devices in Sunnyvale,

California. With their AMD 29000 series devices, a user could

design a special purpose data flow (meaning no program counter

is required) microprocessor using standard library components

such as floating point arithmetic processing units. Semicus-

tom devices, however, are still very expensive and would not

improve the system enough to justify the added expense.

Another potential approach which shows promise is to

utilize a dedicated digital signal processor such as the

products offered by the Zoran Corporation or Analog Devices,

Inc., as a coprocessor. The trend with these devices is

toward the capability of performing larger and larger FFTs on

chip. The ZR34161 processor has an on device storage capabil-

ity of 128 complex integers and can perform an FFT of that

size in a single instruction. The continuing difficulty is

that for each such FFT performed, 512 memory accesses must be

made before and after the instruction is performed to preposi-

tion the data in the appropriate cache memory locations on the

coprocessor. The promise held, however, is that when enough

data can be prepositioned in the on chip cache memory, a real

time FFT can be performed at a reasonable cost per

application.

40

APPENDIX A

program THESIS;

(This program is the main program which supports the MFQPSK
system. It is a Turbo Pascal program which runs on a MS-DOS
system with a math coprocessor. Subroutines called by this
stub but not included in the file are ComplexFFT which is
contained in FFT87B2.INC file and DMAINIT which is contained
in the DMAINIT1.BIN file. The assembly language source code
for the DMAINIT routine is contained in Appendix D of this
thesis.)

($1-) (Disables I/O error trapping)
($R-) (Disables range checking)

const
TNArraySize = 4095;

(THIS IS THE SIZE OF A BLOCK)
IOerr boolean = false;

type
NZERARRAY = array [1..256] of 0..4;

(FOR THE CHOICES OF ONE OF FOUR
PHASES OR FOR A NON-CHOICE OF
0.0 REAL AND 0.0 IMAGINARY)

BCSTARRAY = array (O..TNArraySize] of byte;
(HOLDS DMA DATA TO BE BROADCAST.
THIS REPRESENTS AN ENTIRE BLOCK
OF FFT PROCESSED DATA WHICH IS
OUTPUT AS THE TIME SIGNAL)

TNvector = array[0..TNArraySize] of Real;
(TYPE FOR BOTH THE REAL AND
IMAGINARY DATA FOR THE INPUT TO
THE FFT)

TNvectorPtr = ^TNvector;
(PTR FOR FFT DATA ARRAY WHICH
ALLOWS DYNAMIC ALLOCATION OF
MEMORY BY THE "NEW" CONSTRUCT.
IF MORE ARRAYS WERE REQUIRED
TO BE KEPT FOR MULTIPLE BLOCK
TRANSMISSIONS, THIS DYNAMIC
ALLOCATION COULD KEEP THE DATA
AVAILABLE FOR MULTIPLE BLOCK
TRANSMISSIONS.)

var
ALOW,BLOW,CLOW,DLOW,ELOW,EHI,I,INDEX,J,K,BINDEX,

NUMBAUDS,NUMPTS,PHASECHOICE,TEMP INTEGER;

41

DATAR,DATAI : REAL;
OUTFILE : TEXT;

(THIS FILE WILL HOLD THE ASCII
CHARACTERS WHICH REPRESENT THE
HEX VALUES)

THEFILE : file of byte;
(THIS FILE HOLDS THE ACTUAL HEX
BYTES)

NZERO : NZERARRAY;
(KEEPS TRACK OF ASSIGNMENTS FOR
REVERSALS)

BCST : BCSTARRAY;
(ARRAY MADE AVAIL TO DMAINIT)

XREAL,XIMAG : TNvectorPtr;
(PTRS FOR DATA SENT TO FFT}

INVERSE, RANbELECT, SHORTCHOICE : BOOLEAN;
DATA,ERROR BYTE;

($I FFT87B2.INC)
($I COMPFFT.INC)
($I COMMON.INC)

procedure DMAINIT (var BCST : BCSTARRAY);
(THIS PROCEDURE IS REALLY AN ASSEMBLY LANGUAGE ROUTINE
BUILT IN THE FORMAT ACCEPTABLE TO TURBO PASCAL WHICH
PASSES THE ADDRESS BCST ON THE STACK IN THE FORM OF FOUR
BYTES OF DATA. THE FOUR BYTES OF THE ADDRESS ARE
COMPOSED OF THE SEGMENT (TWO BYTES) AND THE OFFSET (TWO
BYTES). THE PROCEDURE TAKES CARE OF ALL INITIALIZATION
OF THE DMA CONTROLLER AND STARTS THE OUTPUT PROCESS.
THE OUTPUT PROCESS COULD BE SEPARATED BY UNMASKING THE
DMA CHANNEL SEPARATELY. THIS PROCEDURE CAN BE CALLED
REPEATEDLY BY MERELY SUBSTITUTING A NEW ADDRESS FOR A
NEW 4096 BYTE BLOCK OF DATA.)

external 'DMAINITI.BIN';
(THE PROCEDURE CALLED HERE IS A BINARY FILE WHICH IS
PRODUCED BY ASSEMBLING THE DMAINIT1.ASM PROGRAM, LINKING
THE RESULTING DMAINITI.OBJ FILE WITH THE MS-DOS PROGRAM
LINK AND THEN EXE2BIN-ING THE FILE WITH THE MS-DOS
PROGRAM EXE2BIN USING THE DEFAULT OUTPUT EXTENSION .BIN.
THIS DMAINIT1.BIN FILE IS PLACED IN THE SAME DIRECTORY
AS THE TURBO PASCAL COMPILER)

procedure GETPHASECHOICE;

(THIS PROCEDURE IS WRITTEN ONLY TO BE ABLE TO SEE AN
UNDERSTANDABLE RESULT OF THE FFT PROCESS WHICH IS A
SIMPLE SINE-WAVE IF ONLY ONE FREQUENCY IS SELECTED.
OF COURSE THE WHOLE PROCESS GETS MORE COMPLICATED IF
MORE CHOICES ARE MADE BEFORE THE "NO MORE FREQUENCIES"

42

OPTION IS SELECTED SINCE THE RESULT OF 256 SELECTIONS
IS A BAND LIMITED WHITE NOISE CASE. IT GETS THE PHASE
CHOICES FROM THE KEYBOARD OR SELECTS THE PHASES RANDOMLY
IF RANSELECT IS TRUE.)

var
GOODRESPONSE : boolean;
RESPONSE : char;

begin (GETPHASECHOICE)
GOODRESPONSE := TRUE;
repeat

WRITELN(' WHICH ONE YOU WANT?');
WRITELN;
WRITELN('0 NOT THIS FREQUENCY, THANKS');
WRITELN('1 QUADRANT ONE');
WRITELN('2 QUADRANT TWO');
WRITELN('3 QUADRANT THREE');
WRITELN('4 QUADRANT FOUR');
WRITELN('N NO MORE FREQS PLEASE');
WRITELN('R DECIDE FOR ME, PLEASE (RANDOM)');
READLN(RESPONSE);
case RESPONSE of

'0 : PHASECHOICE 4;
'' : PHASECHOICE 0;
'2 : PHASECHOICE 3;
'3' : PHASECHOICE 2;
'4 : PHASECHOICE 1;
'N ,Inl

begin
SHORTCHOICE TRUE;
PHASECHOICE 4;

end;
'R' 'r' :RANSELECT := TRUE;

else
begin
WRITELN('YOU HAVE TO PICK ONE OFF THE LIST!');
GOODRESPONSE := FALSE;

end;
end;(case)

until (GOODRESPONSE or RANSELECT);
end(GETPHASECHOICE ;

procedure ENCODEDATA

begin(ENCODEDATA)
NEW(XREAL); (THIS DYNAMICALLY ALLOCATES MEMORY

FOR THE ARRAY NEEDED TO INPUT
FREQUENCY BIN ASSIGNMENTS FOR THE

!A FFT ROUTINE)
NEW4(XIMAG);

R, 43

FILLCHAR(XREAL%,SIZEOF(XREAL-),O); (FILLCHAR FILLS
THE NEWLY ALLOCATED MEMORY WITH 0
VALUES)

FILLCHAR(XIMAG-,SIZEOF(XIMAG^),0);
ERROR 0; (THIS SETS THE ERROR RETURN CODE SO

THAT AN ERROR INDICATED BY THE FFT
ROUTINE CAN BE RECOGNIZED)

for I 0 to NUMPTS-I do
begin

if (I < BLOW) then
begin

DATAR 0.0;
DATAI 0.0;

end

else if (I >= BLOW) and (I < CLOW) then
begin

J := J+l;
if not (RANSELECT or SHORTCHOICE) then

GETPHASECHOICE
else if SHORTCHOICE then

PHASECHOICE 4
else

PHASECHOICE RANDOM(4);
if (PHASECHOICE = 0) then
begin

DATAR := 80.0;
DATAI 80.0;

end
else if (PHASECHOICE = 1) then
begin

DATAR 80.0;
DATAI -80.0;

end
else if (PHASECHOICE = 2) then
begin

DATAR -80.0;
DATAI -80.0;

end
else if (PHASECHOICE = 3) then
begin

DATAR -80.0;
DATAI 80.0;

end
else
begin

DATAR := 0.0;

DATAI := 0.0;
end;
NZERO[J] PHASECHOICE;

end
else if (I >= CLOW) and (I <= DLOW) then

44

begin
DATAR 0.0,
DATAI 0.0;

end
else if (I > DLOW) and (I <= ELOW) then
begin

PHASECHOICE := NZERO(J];
if (PHASECHOICE = 0) then
begin

DATAR := 80.0;
DATAI -80.0;

end
else if (PHASECHOICE = 1) then
begin

DATAR 80.0;
DATAI 80.0;

end
else if (PHASECHOICE = 2) then
begin

DATAR -80.0;
DATAI 80.0;

end
else if (PHASECHOICE = 3) then
begin

DATAR -80.0;
DATAI -80.0;

end
else
begin

DATAR 0.0;
DATAI 0.0;

end;
J :=J-l;

end
else
begin

DATAR 0.0;
DATAI 0.0;

end;
XREAL-[I] DATAR;
XIMAG-[I] DATAI;

end;
end(ENCODEDATA)

procedureiSCALEDATA)
begin

WRITELN ('WRITING THE FFT RESULTS TO DISK');
for INDEX := 0 to NUMPTS-I do
begin

{*NOTE THAT THIS REPRESENTS A BIAS IN THE SAMPLE

45

I II III l -I - I I I III I

OF HALF THE DYNAMIC RANGE OF THE DIGITAL TO ANALOG
CONVERTER. THIS BIAS SHOULD BE SUBTRACTED BEFORE
THE SIGNAL IS TRANSMITTED. FOR EXAMPLE, IF THE
DYNAMIC RANGE OF THE DEVICE IS O-10V, THE BIAS IS
+5. THIS BIAS WAS DEVELOPED PRESUMING THE D/A DEVICE
DOES NOT RANGE BETWEEN + AND - VALUES.)

TEMP := ROUND(XREAL'[INDEX] + 126.0);
if TEMP < 0 then

TEMP := 0;
DATA := TEMP;
WRITE (OUTFILE,TEMP,' ');
WRITE (THEFILE,DATA);
BCST[BINDEX] := TEMP;
BINDEX := BINDEX + 1;

end;
end{SCALEDATA)

begin (MAIN PROGRAM)
ASSIGN (OUTFILE,'OUTFILAI.DAT'); (THIS OUTPUT FILE IS

DESIGNATED SO THAT AN EXPERIMENTER CAN ENSURE THAT
HE HAS A REASONABLE OUTPUT PRESENTED TO THE DMA
WHICH COULD CONCEIVABLY RESULT FROM THE FFT PROCESS
TO WHICH HE FED THE INPUT. IF HE SELECTED ONLY ONE
FREQUENCY, HE WOULD EXPECT TO SEE IN THIS FILE THE
ASCII REPRESENTATION OF A SINUSOID)

REWRITE (OUTFILE); (REWRITING MAKES THE FILE BLANK IF IT
ALREADY EXISTS AND OTHERWISE CREATES A FILE BY THAT
NAME)

ASSIGN (THEFILE,'HOUTFAI.DAT'); (THIS OUTPUT FILE IS
DESIGNATED SO THAT A BINARY OR HEXADECIMAL OUTPUT
(DEPENDING ON YOUR POINT OF REFERENCE) IS CREATED
WHICH CAN BE IMMEDIATELY OUTPUT TO A D/A CONVERTER.
IN THE EARLIEST DAYS OF THIS PROJECT, THE DATA WAS
OUTPUT THROUGH AN INDEPENDENT PROCESS FOR TEST AND
THIS FILE WAS CONSTRUCTED SO THAT THE DATA WAS EASILY
TRANSLATED)

REWRITE (THEFILE); (REWRITING MAKES THE FILE BLANK IF IT
ALREADY EXISTS AND OTHERWISE CREATES A FILE BY THAT
NAME)

INVERSE := FALSE; (THIS MEANS THAT WE ARE GOING TO ASK
FOR A FORWARD FFT. THE ISSUE OF WHETHER A FORWARD OR
INVERSE FFT IS ONLY A MATTER OF A FACTOR OF 1/PI)

J 0; (J PROVIDES THE INDEX FOR THE ARRAY WHICH
RECEIVES THE 256 FREQUENCY BIN PHASE ASSIGNMENTS 0,
1, 2, OR 3 REPRESENTING QUADRANT 1, 2, 3, OR 4, OR 4
REPRESENTING THE CHOICE OF NO FREQUENCY ASSIGNMENT AND
THEN RETURNS THAT VALUE IN THE REVERSE SEQUENCE FOR
THE MIRROR FREQ ON THE OTHER SIDE OF THE NYQUIST
CENTER FREQUENCY)

46

(THIS IS WHERE THE VALUES ARE INSERTED FOR THE VARIETY OF
CASES. THE CATEGORIES ARE BROKEN UP AS FOLLOWS: IN THE A
RANGE FROM ALOW TO AHI WILL ALWAYS BE ZERO REAL AND ZERO
IMAGINARY. IN THE B RANGE FROM BLOW TO BHI ARE A RANDOM SET
OF QUADRATURE PHASE SIGNALS. THE B RANGE IS SELECTED BY
CORRELATING THE REQUIRED FREQUENCY RESPONSE OF THE INTENDED
OUTPUT DEVICE. THE FREQUENCY PHASES ARE SELECTED BY USING
A RANDOM NUMBER GENERATOR TO BUILD AN EVENLY DISTRIBUTED
SEQUENCE OF INTEGERS WITH VALUES RANGING FROM 0 TO 3 IF
RANSELECT IS TRUE. IF SHORT CHOICE IS TRUE THEN THE VALUE IS
ALWAYS SELECTED AS INTEGER 4 WHICH REPRESENTS A NONCHOICE OF
FREQUENCY. AS THESE VALUES ARE GENERATED THEY ARE STORED IN
THE NZERO MATRIX SO THEY CAN BE USED AGAIN FOR THE REVERSE
SEQUENCE NECESSARY TO GENERATE A REAL TRANSFORM. AFTER EACH
VALUE IS GENERATED AND TEMPORARILY STORED IN THE NZERO MATRIX,
IT IS ASSIGNED A QUADRATURE PHASE REPRESENTATION BASED ON THE
INTEGER VALUE ASSIGNED. I FOUND THAT A GOOD WEIGHTING TO GIVE
THESE QUADRATURE SIGNALS WAS 80.0 REAL AND 80.0 IMAGINARY
(WITH THE SIGNS DEPENDENT ON THE REPRESENTATION SPECIFIED BY
THE INTEGER VALUE). THE C RANGE IS AGAIN ASSIGNED VALUES OF
ZERO REAL AND ZERO IMAGINARY AND CROSSES THE CENTER OF THE
FREQUENCY SPECTRUM BEING SENT TO THE FFT ROUTINE. THE D RANGE
IS THE RANGE WHERE THE B VALUES ARE REVERSED IN ORDER AND
GIVEN THE VALUES OF THE B RANGE COMPLEX CONJUGATES. THIS IS
ACCOMPLISHED BY READING THE NZERO MATRIX IN THE REVERSE ORDER
AND EVALUATING THE INTEGERS AS IN THE B RANGE EXCEPT THAT THE
IMAGINARY PARTS HAVE THE SIGNS REVERSED. THE E RANGE FROM
ELOW TO EHI IS ZEROS IN BOTH REAL AND IMAGINARY PARTS.)

NUMPTS := 4096; (THE COMBINATION OF NUMPTS AND NUMBAUDS
IS INTENDED TO ALWAYS END UP BEING A TOTAL OF 4096
POINTS PRESENTED TO THE FFT ROUTINE. FOR EXAMPLE
ANOTHER SYSTEM COULD BE CHOSEN SUCH THAT NUMBAUDS MIGHT
BE 16 AND NUMPTS BE 256)

NUMBAUDS := 1;
ALOW := 0;
BLOW 672;
CLOW 928;
DLOW := 2768;
ELOW := 3424;
EHI := 4095;
BINDEX := 0; (BROADCAST INDEX)
RANSELECT := FALSE; (IF TRUE SELECTS RANDOM PHASES)
SHORTCHOICE := FALSE; (IF TRUE SELECTS LESS THAN FULL LOAD

OF FREQUENCIES)
for K := 1 to NUMBAUDS do
begin

ENCODEDATA
WRITELN ('PERFORMING THE FFT');
ComplexFFT (NUMPTS,INVERSE,XREAL,XIMAG,ERROR);

47

WRITELN ('THE ERROR VALUE IS ',ERROR);

SCALE DATA
DISPOSE (XREAL);
DISPOSE (XIMAG);

end;
CLOSE (OUTFILE) ;
CLOSE (THEFILE) ;
DMAINIT(BCST);

end.

48

APPENDIX B

Assembly Language Output Loop Program

example was compiled with the DEBUG program
provided with all MS-DOS systems

XXXX:0100 mov dx,2000 ;puts the port address in
;dx register

XXXX:0103 mov bx,0112 ;puts address of data area
;in bx register

XXXX:0106 mov cx,2000 ;specifies 4096 words of
;data to be output

XXXX:0109 mov al,[bx] ;take word of data at address
;pointed to by bx register
;and put it in al register

XXXX:010B out dx,al ;puts byte of data in al on
;the data bus

XXXX:010C inc bx ;add one to the buffer address
XXXX:010D dec cx ;decrease count remaining
XXXX:010E jnz 0109 ;loop until all bytes are out
XXXX:0110 int 20 ;returns system control to DOS
XXXX:0112 ;this is where the data is
;placed

49

APPENDIX C

Assembly Language Program to Modify Refresh Time

; example was compiled with the DEBUG program
provided with all MS-DOS systems

XXXX:0100 mov al,74 ;selects timer #1
XXXX:0102 out 43,al ;43 is the port for the timer
XXXX:0104 mov al,ff ;this is the value you will set

;for the lower 8 bit count down
XXXX:0106 out 41,al ;41 is the port for the count

;preload
XXXX:0108 mov al,00 ;this is the upper 8 bits for the

;count down
XXXX:010A out 41,al ;the timer keeps track of how

;many times it has been sent a
;value and knows that this is the
;upper 8 bits since it is the
;second time its address has been
;decoded

XXXX:010C int 20 ;returns system control to DOS

50

APPENDIX D

codeseg segment
public dmainit
assume cs:codeseg

;procedure DMAINIT (var BCST : BCSTARRAY);

;this procedure initializes dma channel 3 and sets the
;parameters to output the array bcst by passing the start
;address of the array on the stack.

dma equ 0
dmapage equ 80h
dwavcnt equ 1000h

dmainit proc near
push bp
mov bp,sp ;use bp to address stack
les di,dword ptr[bp+4] ;move address of

;bcst into es:di
mov al,5bh ;dma chan 3 single mode,
out dma+ll,al ; read, autoinitialize
out dma+12,al ;reset first/last ff
mov ax,es ;calc high order 4 bits
mov cl,4 of buffer area
rol ax,cl
push ax ;save ax for dma start addr
and al,Ofh
out dnapage+2,al ;store in ch 3 dma page

;register
pop ax
and al,OfOh
add ax,di ;get page offset
out dma+6,al ;output waveform buffer
mov al,ah start address
out dma+6,al
mov ax,dwavcnt ;output dma byte count
out dma+7,al
mov al,ah
out dma+7,al
mov al,3 ;unmask ch 3 to start
out dma+10,al
pop bp
ret 4 ;pop 4 bytes off stack for

;addr of bcst
dmainit endp
codeseg ends

end dmainit

51

APPENDIX E

The following two figures show the circuit used in the
expansion board based MFQPSK system. The first is the logical
schematic and the second is the actual expansion board pin
diagram.

LKGRD --

GRD-

GRD -- K

DACK3*

DREQ3*

IOW*OCTAL ANOUT

DACK3* DATA D/A

LATCH

D0-D8 a

52

z o-4.

U- oirUl

u f

UuUO<- zx-uu

uu~u~uumi**U

53

LIST OF REFERENCES

1. Eggebrecht, L. C., Interfacing to the IBM Personal
Computer, Howard W. Sams & Co., 1983.

2. Gray, L. E., Sampling Rate Reduction for a High Data
Rate Acoustic Receiver, Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1986.

3. Proctor, E. L., Design of a Digital Acoustic
Communications Receiver for a Linear Hydrophone
Array, Master's Thesis, Naval Postgraduate School,
Monterey, California, June 1985.

4. Roemmele, B. K., "Instant Speedup for Your PC," PC
Magazine, v. 7, no. 13, July 1988.

5. Sargent, M., and Shoemaker, R. L., The IBM Personal
Computer From the Inside Out, Addision-Wesley
Publishing Company, 1984.

6. Whitacre, P. M., Effects of Soft Limiting on the
Performance, Detection, and Synchronization of a
Digital Acoustic Communications System, Master's
Thesis, Naval Postgraduate School, Monterey,
California, June 1986.

54

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Department Chairman, Code 62 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5100

4. Professor P. H. Moose, Code 62 Me 6
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5100

5. Commander 1
Naval Ocean Systems Center
Attn: Mr. Darrell Marsh (Code 624)
San Diego, California 92152

55

